Jacobs In the kNOW

For the best viewing experience, please use Microsoft Teams desktop or mobile app. If you are on a browser, we recommend that you use Google Chrome. Please note that this session is automatically recorded for marketing purposes. To enable a more interactive session, the live Q&A at the end will not be recorded. You may use CC button in the Teams toolbar to turn on closed captions.

We encourage you to submit questions in the chat.

Jacobs Challenging today. Reinventing tomorrow.

Challenging today. Reinventing tomorrow.

Closing the loop: Biosolids treatment for maximum resource recovery and carbon neutrality

Agenda

Introductions

Adaptive System Planning

Advanced Digestion

Thermal Technologies

Resource Recovery Opportunities

Live Q&A

Introduction

Colin Newbery

Introductions by Colin Newbery

About Jacobs In the kNOW webinars Introduction

Delivers the latest information on the hottest topics trending in the water sector. Each webinar includes case studies and firsthand experiences with the featured topics presented by the foremost water industry experts.

The webinar series was launched to provide a platform to connect with the water sector, share innovations and offer professional development credits.

Visit: <u>www.jacobs.com/webinars/in-the-know</u>

ဂြိ In the **kNOW** Webinar

Identifying Smarter Solutions to Infrastructure Challenges Using Optimization

Infrastructure projects are becoming more challenging as we address aging infrastructure, capacity issues, climate change, population growth and conflicts with other existing infrastructure. Optimization technology employs sophisticated algorithms, enhanced computation and automation to assist water utilities in finding solutions to these complex infrastructure problems that maximize benefits and minimize costs. In this webinar, we will present examples from Anglian Water's Strategic Pipeline Alliance, a CSO Long-Term Control Plan and others with our partner Optimatics.

Climate Change: How Should Water Utilities Respond to the IPCC's Call to Action?

While we respond to other pressing global challenges, climate change remains one of the biggest threats to life on this planet as we know it. As anchor institutions embedded in nearly every community, water systems have an opportunity to accelerate our progress, playing an even bigger role in delivering decarbonization and resilience measures against climate change. In this webinar we will present the key findings of the recent IPCC AR6 'Physical Science Basis' report of greatest relevance to the Water sector. We will help identify the potential vulnerabilities and make practical recommendations for resilience actions that can be taken to pro-actively manage them.

The Water Sector and Hydrogen: Green for Go

This "In the kNOW" webinar examines hydrogen from the perspective of the water sector as a potential producer and user of hydrogen. We identify pathways for hydrogen production at Water Resource Recovery Facilities, highlighting synergies and trade-offs with day-to-day treatment, and exploring hydrogen's possible contribution to the water sector's Net Zero carbon emissions targets.

Speakers Meet our presenters

Facilitator

Colin Newbery, P. Eng

Jacobs Technical Director, Water Asia

Peter Burrowes, P. Eng

Jacobs Senior Fellow Technical Engineer, Biosolids and Resource Recovery, Canada

Gokul Bharambe

Jacobs Technical Director, Biosolids and Resource Recovery, ANZ

Our speakers Meet our presenters

Peter Burrowes

- 47 years experience
- Global leadership in Process Engineering at Jacobs
- SME in thermal and biological treatment of organic wastes
 - Anaerobic digestion (AD)
 - Thermal and chemical/thermal pretreatment prior to AD
 - Composting
 - Thermal drying
 - Incineration
 - Gasification
 - Pyrolysis
 - Hydrothermal Liquifaction

Gokul Bharambe

- 18 years of experience
- Technical Director Resource recovery, ANZ
- Expertise in:
 - Adaptive system planning, Options assessment, Concept Design, Detailed design, commissioning
 - Anaerobic digestion
 - Advanced Digestion
 - Co-digestion
 - Resource Recovery

Adaptive System Planning

Development of World Cities

1950

World Cities exceeding 5 million residents

Data source: U.N. Population Division

Development of World Cities

World Cities exceeding 5 million residents

Data source: U.N. Population Division

Development of World Cities

Disruptive Approaches are Needed to go from Treatment to Product Recovery

Solids Processing is an integral part of a **Circular Economy**

Nutrients

Water

©Jacobs 2023

Biosolids Adaptive System Planning: Decision Making by Balancing Multiple Objectives

Economical Multiple Objectives JRAUJUUUJINUS	Economic Feasibility	 Circular Economy (Waste to Resource) Revenue (Waste receiving, Value of resources) Cost (Capital, Operating, Life Cycle Cost) Adaptability to changing economic conditions 		
	Environmental Sustainability	 Regulatory Requirements (Current, Future) Resource Recovery (Biosolids, Nutrients, Energy, Water) Produce more biogas and less biosolids (Reduce energy demand) Market (Organic waste receiving, Biosolids, Energy) 		
	Infrastructure Operations	 Reliability & Redundancy, Flexibility Operation & Maintenance Ease Maximize use of existing assets 		
8 5	Socially Acceptable	 Self Reliant (Less Dependent on Utilities) Odor and Noise Control Aesthetics Reduced Truck Traffic 		

Adaptive System Planning - example

Adaptive System Pathway – solids handling model

Adaptive System Pathway – solids handling model

Adaptive System Pathway – solids handling model

Adaptive System Planning Outcome - Examples

Sum of Biochar (Pyrolysis/ Gasification) (DT/year)

Adaptive System Planning Outcome - Examples

Advanced Digestion

©Jacobs 2023

Anaerobic Digestion is a Major Route for Recovering Energy from Influent Carbon

Energy Conversion and Resource Recovery

Future of Anaerobic Digestion

- High Performance (mesophilic, thermophilic)
- Hydrolysis (thermal, microbial)
- Co-Digestion
- Digestion combined with thermal process
- Anaerobic side-stream treatment
- Anaerobic full-stream treatment

Co-digestion

- Simultaneous digestion of two or more substrates
- Why co-digest?

Parameters	Food Waste	Sewage sludge (Conventional)
Micro-nutrients	Ļ	Î
Buffer capacity	Ļ	
Digestibility	Î	Ļ
Percent solids	Î	Ļ
Carbon : Nitrogen	Carbon source	Ammonia toxicity

Profitable Operation from Co-Digestion

Advanced Digestion Technology Selection Drivers

Process Intensification		Increase and B produ	e in VSD iogas iction		Ease of implementation
Maturity of Technology		Non Proprietary or Proprietary with multiple vendors			Operability
	Scale		Improved Dewatering Performance		ved ering nance

Why Hydrolysis

Hydrolysis process – key Mechanism

- Focused on floc disintegration and cell lysis
- From cell wall damage to full cell disruption depending on energy intensity
- Increased digestion rates & stability
- Increased volatile solids reduction (VSr)
- Increased biogas production
- Reduced solids for dewatering & reuse/disposal
- Several mechanisms: Physical, thermal, biological

©Jacobs 2023

Thermal Hydrolysis-Mechanism

Benefits of Thermal Hydrolysis

Allows significantly increased loading to digester

Lower viscosity liquid sludge (easier to pump)

Improved volatile solids destruction & digester biogas increase

Improved dewatering performance

Reduce quantity of solids requiring further handling

Lower odor product without pathogen regrowth

Full THP can produce Class A Biosolids

2 pulper 2 flash Tank design- Woodman Point

36

2 pulper 2 flash Tank design – Woodman Point

Solids Stream THP

Enhancing Anaerobic Digestion Performance with the Microbial Hydrolysis Process (MHP) using C. bescii.

Anaerobic Digestion enhancement with the Microbial Hydrolysis Process (MHP) using C. bescii bacterium.

©Jacobs 2023

MHP is compatible with all AD processes, including the thermal hydrolysis process (THP)

C. bescii is a hyper-thermophilic anaerobic bacteria that is capable of hydrolysing recalcitrant organic materials.

- Caldicellulosiruptorbescii (C. bescii) was isolated in a geothermally heated freshwater pool in Russia in 1990
- Thrives at 75°C
- Hydrolyzes cellulose and other recalcitrant organic material like waste activated sludge

C. bescii bacteria under a microscope

MHP using C. bescii has been tested at both lab-and pilot-scale

Lab Scale 10-L Digesters and 5-L Hydrolysis Tanks

Pilot Scale 1200-L Digesters and 500-L Hydrolysis Tank

©Jacobs 2023

In summary, the addition of MHP increased anaerobic digestion performance from good VSR (~60%) to great VSR (>75%).

Facility	Digestion	Existing Performance VSR	Method	Control Performance VSR	Test Performance VSR
Gresham WWTP Gresham, OR	Mesophilic AD with FOG	60%	Lab-scale	70% Attributed to C. bescii in control	80%
Encina Wastewater Authority WPCF Carlsbad, CA	Mesophilic AD	60%	Lab-scale	71% Attributed to long retention time	77%
Clinton River WRRF, operated by Oakland County WRC; Pontiac, MI	THP Mesophilic AD	58%	Pilot-scale	65% Attributed to solids settling in control	75%

For a conventional AD system at a 300,000 PE WRRF: Applying MHP can result in a total value of 450,000 \$/yr

Thermal Processes

Applications and benefits

Why Choose Thermal Technologies

- To reduce the quantity of biosolids produced
- To recover and utilise thermal energy
- To produce an alternate product
- To produce Class A product
- To destroy PFAS

Different Combustion Technologies

©Jacobs 2023

Incineration / Thermal Oxidation

Bubbling Fluidized Bed Boiler – Hong Kong Example: Technical Data

Technical data of the steam boilers				
Type of construction	Bubbling fluidized bed boiler, EcoFluid AC			
Number	4			
Fuel	Sewage sludge			
Heating value range Hu	3.0 – 5.8 MJ/kg			
Self-sustained combustion	as from approx. 3.5 MJ/kg, depending on load			
Fuel heating capacity ea.	27.5 MW max.			
Sludge throughput ea.	23 t/h max.			
Steam output ea.	31.3 t/h max.			
Steam temperature	383°C			
Steam pressure	42 bar			
Feed water temperature	130°C			
Flue gas temperature	200°C			

Typical Energy Balance R2E2 – 2035 Maximum Month Load

©Jacobs 2023

Green Bay's R2E2 BioThermal System with Anaerobic Digestion and Incineration

Pyrolysis Process

 Thermal conversion of carbon-based materials, in absence of air or oxygen into syngas and biochar

• It requires an indirect source of heat

Gasification Process

 Thermal conversion of carbon-based materials, with a limited supply of air or oxygen (substoichiometric), into syngas and biochar

 It requires a direct source of heat that is generated by the partial oxidation of a small amount of the carbonbased material

PFAS Destroying Technologies Significantly Reduce Hauling and Beneficial Use Costs!

Biochar from Bioforcetech Corp.

- One set of samples 2019, confirmed in 2020
- Pyrolysis at 1100°F (600°C)
- We know soil sampling needs to be above 1000°C for destruction of PFAS

Compound Name	Dry Biosolids (ng/g)	Biochar (ng/g)
PFBA	7.03	Not Detected
3:3 FTCA	ND	Not Detected
PFPeA	5.94	Not Detected
PFBS	2.3	Not Detected
4:2 FTS	ND	Not Detected
PFHxA	33.7	Not Detected
PFPeS	ND	Not Detected
HFPO-DA	ND	Not Detected
	=89.1 &	All ND
6:	- 20.5	w zppu
PFOA	89.1	Not Detected
PFHpS	ND	Not Detected
7:3 FTCA	40	Not Detected
PFNA	5.3	Not Detected
PFOSA	ND	Not Detected
PFOS	26.3	Not Detected
9CI-PF3ONS	ND	Not Detected
PFDA	11.3	Not Detected
8:2 FT5	5.68	Not Detected
PFNS	ND	Not Detected
MeFOSAA	23.5	Not Detected
EtFOSAA	19.6	Not Detected
PFUnA	3.39	Not Detected
PFDS	ND	Not Detected
11Cl-PF3OUdS	ND	Not Detected
10:2 FTS	ND	Not Detected
PFDoA	5.85	Not Detected
MeFOSA	ND	Not Detected
PFTrDA	ND	Not Detected
PFTeDA	2.44	Not Detected
EtFOSA	ND	Not Detected
PFH×DA	ND	Not Detected
PFODA	ND	Not Detected
MeFOSE	17.1	Not Detected
EtFOSE	ND	Not Detected

Jacobs and CharTech Bench Scale Pyrolysis Testing in 2020

- A continuously-fed bench-scale pyrolysis kiln unit (known as "Baby MFR") processing 500g dried biosolids at 500°C and 700°C
- Bench study completed at ICFAR (Western University Institute for Chemicals and Fuels from Alternative Resources)
- Biosolids were previously dewatered and subsequently dried in a batch thermal dryer to approximately 95 percent solids
- Biosolids processed in pyrolysis reactor for 20 minutes

PFAS Testing Results Before and After Pyrolysis

PFAS Mass and % Reductions out of 20 ug PFAS in biosolids

©Jacobs 2023

Gasification / Pyrolysis Facilities in Various Stages of Implementation

Facility	Vendor	Drying / Thermal Process	Size (Wet tonne/day)	Status
Silicon Valley Clean Water, CA, USA	Bioforcetec (Pyreg) ¹	Biodrying / Pyrolysis	20	Operating Since 2017
Ephrata, PA, USA	Bioforcetec (Pyreg) ¹	Biodrying / Pyrolysis	20	Construction 4Q, 2022
Loganholme, Australia	Pyrocal	Thermal drying / Gasification	90	Commissioning phase
Unkel, Germany	Pyreg	Thermal Drying / Pyrolysis	NA	2015
Homburg, Germany	Pyreg	Thermal Drying / Pyrolysis	NA	2016
Hammenhög Sweden	Pyreg	Thermal Drying / Pyrolysis	NA	2019
Trutnov Czech Republic	Pyreg	Thermal Drying / Pyrolysis	NA	2020
Lorsbach Germany	Pyreg	Thermal Drying / Pyrolysis	NA	2021
Kleve Germany	Pyreg	Thermal Drying / Pyrolysis	NA	Q4 2022

Pyrolysis / Gasification Suppliers

Biowaste Pyrolysis Solutions

Ecoremedy

Bioforcetech

Aries

Anaergia

Supercritical Water Oxidation

Sludge to liquid biofuel

Leveraging existing infrastructure to create low-carbon fuel

Hydrothermal Processing Demonstration Facility

Hydrothermal Processing Demonstration Facility

Resource Recovery

This Photo by Unknown Author is licensed under CC BY-ND

Resource Recovery

- P recovery Ostara, from Ash
- Ammonia recovery impact on N₂O emissions
- Biomethanation
- Degassing fugitive methane emission reduction

Benefits of Nutrient Recovery

- Helps WWTPs meet discharge limits:
 - Effluent recovery
 - Reduced sidestream loading
- Produces a sustainable and beneficial byproduct
- Revenue generation for a utility from sale of the fertilizer product
- Controls and mitigates scaling or fouling of equipment from detrimental precipitation
- Alleviates negative impact of EBPR sludge on dewaterability
- Controls the nutrient content of biosolids

Nutrient Recovery at WWTPs

Convert Problem into Opportunity

Struvite Recovered as a <u>finished</u> product

P Recovery

Feature	Ostara Pearl®	NuReSys	Phospaq	Crystalactor	Airprex
Type of reactor	Fluidized Bed Reactor (FBR)	Completely Stirred Tank Reactor (CSTR)	CSTR	FBR	CSTR
Point of Recovery	Centrate/Filtrate	Centrate/Filtrate; digested sludge	Centrate/ Filtrate	Centrate/Filtrate	Digested sludge
Recovery efficiency	80-90% P 10-40% NH3-N	>85% P 5-20% N	80% P 10-40% NH3- N	85-95% P for struvite 10-40% NH3-N > 90% P for calcium phosphate	80-90% P 10-40% NH3-N
Full-scale installations	22	9	3	4	13

Ammonia Recovery

- Steam Stripping / Thermal stripping
- Membrane Ion exchange
- Membrane separation
- Air stripping increasing pH

Organics Group: Thermal stripping ammonia recovery

Biomethanation

- Produces high-value product
- Replaces natural gas with renewable energy
- Multiple vendors available
- Widely applied in the Europe
- Multiple Technologies available:
 - Water Wash
 - Pressure Swing Adsorption
 - Membrane separation

Figure 1

Biogas value chain Bib.10

https://arena.gov.au/blog/biogas-time-to-start-cooking-with-renewable-gas/

Degassing of Digested Biosolids

- Recovery of methane
- Additional biogas for co-generation and reduces fugitive methane emission
- Can remove struvite, resulting in Improved dewatering

