Jacobs

Challenging today. Reinventing tomorrow.

Potable Reuse: Nature reuses water endlessly, why don't we?

Agenda

- Larry Schimmoller, Jacobs Global Technology Director for Water Reuse
- Germano Salazar-Benites, Hampton Roads Sanitation District SWIFT Project Manager
- Tyler Nading, Jacobs Senior Technologist
- Jim Lozier, Jacobs Global Technology Director for Desalination
- David Pedersen, General Manager of Las Virgenes Municipal Water District and Administering Agent for the Las Virgenes-Triunfo Joint Powers Authority
- Q&A

Potable Reuse Definitions (IPR vs DPR)

©Jacobs 2020

Potable Reuse Definitions (IPR vs DPR)

Operational Potable Reuse Plants

RO-Based (West U.S. and International vs. GAC-Based (East and Central U.S.)

Jacobs

Challenging today. Reinventing tomorrow.

Germano Salazar-Benites, Hampton Roads Sanitation District SWIFT Project Manager

Tyler Nading, Jacobs Senior Technologist

Hampton Roads Sanitation District (HRSD)

- Provide wastewater treatment for 18 localities in SE Virginia
- Serve 1.7 million people (20% of all Virginians)
- 250 MGD of treatment capacity at 13 treatment plants

7

 Sustainable Water Initiative For Tomorrow (SWIFT) will add over 100 MGD of advanced treatment for 7 of the treatment plants

SWIFT Program Drivers

WWTP Nutrient Discharge Requirements

- Frequent, intermittent regulatory changes have driven historical capital improvement projects
- Chesapeake Bay is nutrient sensitive
- Opportunity to create a nutrient credit trading system

Rapidly Depleting Groundwater Levels

- Potomac Coastal Plan Aquifer System has seen a 200 ft drop in water levels in some places, leading to:
 - Reduced groundwater withdrawals
 - Saltwater intrusion
 - Land subsidence

Water reuse project that is <u>not</u> driven by water scarcity!

8

© Jacobs 2020

SWIFT Program Timeline

SWIFT Program Timeline

- 2013-2014 Concept Evaluation
- 2015-2017 Pilot Operation & Test Well Construction
- 2016-2018 1 MGD SWIFT Research Center
- 2019-2030 Full-Scale Implementation
 - 5 full-scale Advanced Water Treatment Plants
 - 100 MGD total capacity

Pilot Testing

- Membrane-Based Pilot (UF-RO-UVAOP) June 2016 – Dec 2016
- Carbon-Base Pilot (F/S-O3-BAF-GAC-UV) July 2016 – Nov 2017
- Both pilots were run by HRSD staff and a team of graduate students
- Intensive sampling campaign to quantify performance
- Both pilots met treatment goals
 - EPA MCLs
 - TOC
 - CECs
 - Pathogens

1 MGD SWIFT Research Center

- 1 MGD Facility with Aquifer Recharge
- Carbon-Based Treatment Process Selected (F/S-O3-BAF-GAC-UV)
- Startup in April 2018
- Extensive education components for outreach, including ribbon cutting
- Reasons for building the SRC:
 - Public outreach
 - Operator training
 - Get data for full-scale permits
 - Learn as much as we can

Defining A Regulatory Approach

Existing Potable Reuse Regulations

- No federal or state regulations for indirect potable reuse projects
- VA has existing IPR regulation specific to UOSA

HRSD's Approach

- Propose a reasonable regulatory framework that ensures public health safety and is built on data
 - Provide a multi-barrier approach to pathogens and organics
 - Avoid a TOC limit that requires RO treatment
- Get all regulatory stakeholders involved early and often
- Assemble an NWRI independent advisory panel
- Use 1 MGD RC as a regulatory stepping-stone

Parameter	Proposed Regulatory Limit	Water Quality Goal (non-regulatory)	
MCLs	Meet all primary MCLs	N/A	
Total Nitrogen	5 mg/L monthly average; 8 mg/L max daily	Secondary Effluent CCP Action Limit for TIN = 6 mg/L	
Turbidity	IFE <0.15 NTU 95% & >0.3 NTU for no more than two consecutive samples	CCP Action Limit at 0.10 NTU	
тос	4 mg/L monthly average (TBD)	CCP Action Limit at 6 mg/L	
Total coliform	< 2 CFU / 100 mL; 95 th perc.	CCPs to achieve 12 LRV for viruses and 10 LRV for Crypto & Giardia	
E. Coli	Non-detect		
Unregulated Chemicals	None	Monitor suite of chemicals and address as necessary	
Total Dissolved Solids	None	None	

Enhanced Source Control Programs

Enhanced Source Control Programs are needed for potable reuse projects

Framework for HRSD's Enhanced Source Control Program

© Jacobs 2020

SWIFT RC Bromide – Source Control in Action!

- From existing data set, influent bromide was 0.53 mg/L
- Source identification showed that landfill leachate contributed close to 100% of influent bromide load!
- When leachate flow was stopped, bromide reduced below 0.2 mg/L
- <u>Short-term solution</u>: work with landfill to target a lower, continuous flow
- Long-term solution: divert leachate to a different WWTP

SWIFT RC Bromide and Leachate Flow

Challenges with AWTP Sizing for Potable Reuse

© Jacobs 2020

16

SWIFT Facility Sizing Analysis

EQ Basin and AWTP Sizing Analysis

SWIFT facility utilization analysis based on 3-yrs of historical data

SWIFT facility sizing drivers for HRSD:

- 1. Total water treated
- 2. AWTP utilization

Dynamic simulation model with rules-based control logic

Facility Costs and Footprints

- Identifying size of each facility allows for:
 - Improved cost estimates
 - Estimate of AWT footprint to determine if additional land is needed

Jacobs

Challenging today. Reinventing tomorrow.

Beenyup Advanced Water Recycling Plant

Australia's First Groundwater Replenishment Scheme Jim Lozier, Jacobs

Project Location/Developer

Project Location

- Perth capital and largest city of Western Australia
- ~2 million residents in metro area

Project Developer

- Water Corporation (of Western Australia)
- Supplier of W&WW services throughout WA
- Activities span 1 million square miles
- ~2,800 employees

Why the Need for Groundwater Replenishment

21

© Jacobs 2020

Groundwater Replenishment Scheme

© Jacobs 2020

Treatment Train

Wastewater Treatment

Effluent suitable for discharge to ocean

Ultrafiltration – Removes:

- All suspended solids
- Crypto, giardia, all bacteria
- Viruses (pore size dependent)

Reverse Osmosis – Removes:

- All viruses
- Inorganics, including nitrogen
- Bulk and trace organics

Ultraviolet Treatment

- Final disinfection step
- Inactivation of bacteria, crypto, giardia and viruses

Pathogen Control is Paramount

	Equivalent Log Reduction Credits		
	Bacteria	Virus	Protozoa
Wastewater Treatment	1	1	0.5
BAWRP Process Unit			
UF with chloramination >1.5 mg/L	3	3	3
Reverse Osmosis	3	3	3
UV Disinfection at >186 mJ/cm2	4	4	4
Total AWRP ELRC	10	10	10
Total (WWTP & BAAWRP)	11	11	10.5
DoH Requirement	8.5	9.5	8
Excess credits (safety factor)	2.5	1.5	2.5

Required full-scale validation testing!

26

18 Recycled Water Quality Indicators 292 Recycled Water Quality Parameters 27 © Jacobs 2020

Robust Chemical Monitoring Plan Required

Ultrafiltration System

Parameter	Value
Filtrate Flow	17.3 mgd
Flux (instantaneous)	30 gfd
Recovery	<u>></u> 92%
Module Supplier	Dow (DuPont)
Module Type	SFD-2880
Membrane Pore Size	0.03 µm
Log pathogen removal	<u>></u> 3

©Jacobs 2020

Reverse Osmosis System

Parameter	Value
Permeate Flow	13 mgd
Flux	11.3 gfd
Recovery	75 - 80%
Module Supplier	Hydranautics
Element Type	ESPA2-LD
Membrane Type	Thin-film polyamide
Array	2 stage
Log pathogen removal	<u>></u> 3

©Jacobs 2020

Ultraviolet Disinfection System

Parameter	Value
Effluent Flow	12.7 mgd
UV Dose	186 mJ/cm ²
UV Transmittance	<u>></u> 94%
Supplier	Calgon
Reactor Model	Sentinel 9L24
Туре	Med Pressure
Skids	4+0
Pathogen removal	<u>></u> 4

© Jacobs 2020

BAWRP Project Implementation

Joint Venture of Jacobs and Thiess Constructors selected by Water Corp for BAWRP implementation

Milestone	Date
Project Award	July 2014
Start of Design	Aug 2014
Design Completion	Feb 2015
UF/RO/UV Systems Delivery	Jun 2015
Construction Completion	Mar 2016
Validation & Verification Completion	Nov 2016
DoH Approval to Recharge	Aug 2017

Over 9 billion gallons of purified water from the BAWRP have been recharged into Perth's aquifers in 2+ years of operation

Groundwater Replenishment is Key Component of Drought Proofing Perth

Challenging today. Reinventing tomorrow.

Pure Water Project

David Pedersen Las Virgenes -Triunfo

Challenges/Drivers

- Improve water supply reliability
- Meet regulatory requirements

Supply/Demand Imbalance

Stakeholder-Driven Process

- Began in January 2015
- Developed a "roadmap" to fully utilize recycled water
- Established "Guiding Principles"
- Maximize beneficial reuse
- Seek cost-effective solutions
- Seek partnerships beyond JPA
- Gain community support
- Govern with a partnership
- Be forward thinking

Stakeholder-Driven Process

- Heal the Bay
- Los Angeles Waterkeeper
- National Park Service
- California State Parks
- Mountains Restoration Trust
- Santa Monica Mountains
 Conservancy
- Resource Conservation District
 Malibu Creek MS4 Watershed Management Committee
- Santa Monica Mountains Fund

- Los Angeles DWP
- Calleguas Municipal Water District
- Senator Fran Pavley's Office
- Supervisor Sheila Kuehl's Office
- City of Calabasas
- City of Thousand Oaks
 - Malibu Creek MS4 Watershed Management Committee (Agoura Hills & Westlake Village

Potable Reuse w/ Las Virgenes Reservoir

Advanced Water Treatment Proven Technology

Pure Water Demonstration Project

Why?

- Permitting
- Full-Scale Design Optimization
- Staff Training
- Public Outreach/Confidence
- Research/Innovation

Pure Water Demonstration Project

Pure Water Demonstration Project

Experience – Interior

Questions and Answers

